Phase Composition of Mo-Si-V Hypoeutectic Alloys
نویسندگان
چکیده
منابع مشابه
Optimizaton of Mo-Si-B Intermetallic Alloys
Mo-Si-B intermetallics consisting of the phases Mo3Si and Mo5SiB2, and a molybdenum solid solution (“ -Mo”), have melting points on the order of 2000 °C. These alloys have potential as oxidationresistant ultra-high-temperature structural materials. They can be designed with microstructures containing either individual -Mo particles or a continuous -Mo phase. A compilation of existing data shows...
متن کاملMo-Si-B alloys for ultrahigh-temperature structural applications.
A continuing quest in science is the development of materials capable of operating structurally at ever-increasing temperatures. Indeed, the development of gas-turbine engines for aircraft/aerospace, which has had a seminal impact on our ability to travel, has been controlled by the availability of materials capable of withstanding the higher-temperature hostile environments encountered in thes...
متن کاملSimilarities and Differences in Mechanical Alloying Processes of V-Si-B and Mo-Si-B Powders
V-Si-B and Mo-Si-B alloys are currently the focus of materials research due to their excellent high temperature capabilities. To optimize the mechanical alloying (MA) process for these materials, we compare microstructures, morphology and particles size as well as hardness evolution during the milling process for the model alloys V-9Si-13B and Mo-9Si-8B. A variation of the rotational speed of t...
متن کاملAmbient- to Elevated-Temperature Fracture and Fatigue Properties of Mo-Si-B Alloys: Role of Microstructure
Ambientto elevated-temperature fracture and fatigue-crack growth results are presented for five MoMo3Si-Mo5SiB2–containing -Mo matrix (17 to 49 vol pct) alloys, which are compared to results for intermetallic-matrix alloys with similar compositions. By increasing the -Mo volume fraction, ductility, or microstructural coarseness, or by using a continuous -Mo matrix, it was found that improved fr...
متن کاملPhase Diagrams of Fe-Si Alloys under High Pressures
Introduction Iron is the most abundant element in the Earth’s core. However, the density of the outer core is about 10% lower than the density of iron at the pressure and temperature conditions of the outer core, indicating the presence of a low-atomic-weight component (such as H, C, O, Si, or S) in the core [1]. There is also evidence that the inner core may be less dense than pure iron and th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: KnE Materials Science
سال: 2019
ISSN: 2519-1438
DOI: 10.18502/kms.v5i1.3957